
20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 1/12

Ansible Cheatsheet
Ansible

In this Ansible cheatsheet I have a page with all the playbooks, plus below I detail these files and the various options. Its best you use the Ansible
documentation to see if any modules have been updated or any new modules have been created, below is just some of the highlights of what Ansible can do.
You can also use the Ansible Galaxy website to see what others have created in regards to roles.

Ansible is an open-source software provisioning, configuration management, and application-deployment tool, it runs on many Unix-like systems, and can be
configured for both Unix (Linux, Solaris, HPUX, etc) and Microsoft Windows. The diagram below shows the Ansible architecture

Ansible Server a system where Ansible is installed and configured to connect and execute commands on nodes

Node (Hosts) a server that is controlled by Ansible

Inventory File a file that contains information about the servers and groups Ansible controls, typically located at
/etc/ansible/hosts

Play a full Ansible run. A play can have several playbooks and roles, included from a single playbook that acts as entry
point

Playbook a file containing a series of tasks to be executed on a remote server. Playbooks exist to run tasks.

Tasks combine an action (a module and its arguments) with a name and optionally some other keywords (like looping
directives)

Action An action is a part of a task that specifies which of the modules to run and which arguments to pass to that
module

Role a collection of playbooks and other files that are relevant to a goal such as installing a web server

Facts are simply things that are discovered about remote nodes. While they can be used in playbooks and templates just
like variables, facts are things that are inferred, rather than set. Facts are automatically discovered by Ansible
when running plays by executing the internal setup module on the remote nodes

Modules are the units of work that Ansible ships out to remote machines

Plugins are a piece of code that expends the core functionality of Ansible. There are many useful plugins, and you also can
write your own.

CMDB is a type of repository which acts as a data warehouse for the IT installations

Cloud is a network of remote servers on which you can store, manage, and process the data

Ansible is agentless, temporarily connecting remotely via SSH or Windows Remote Management (allowing remote PowerShell execution) to do its tasks.

I will leave you to the web and other youtube videos on how to install the latest version of ansible.

http://www.datadisk.co.uk/html_docs/ansible/ansible_playbooks.html
https://galaxy.ansible.com/

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 2/12

SSH setup

Below is the instructions on how to setup a private/public key pair that can be used to allow the Ansible server to directly SSH into the the client. You should
setup the root user to allow SSH to any client without a password. Start by setting up the clients first

Client (Node) ssh-keygen -t rsa # you can call it something and specify the directory, you can also use a

passphase

Ansible Server # copy the above clients public key to the Ansible server (you can use scp)

cd ~/.ssh

echo <client public key> >> authorized_keys # >> means append

ssh <client> # now you should be able to login to the client

without a password

Notes

--

.ssh directory should have permissions of 700 and authorized_keys file should have permissions of 600

Its also a good ides to update the /etc/hosts file with the clients IP address

Ansible Basics

The Inventory will list the ansible hosts plus can have some additional information (connection details). A file (ini or yaml) is used for the inventory, the
default location /etc/ansible/hosts

Inventory file (INI) control.example.com ansible_connection=local # don't use SSH as control is same host

[webservers]

foo.example.com

bar.example.com

[dbservers]

one.example.com

two.example.com

three.example.com

Inventory file
(YAML)

all:

 hosts:

 control.example.com:

 children:

 webservers:

 hosts:

 foo.example.com:

 bar.example.com:

 dbservers:

 hosts:

 one.example.com:

 two.example.com:

 three.example.com:

Default groups

Tasks are nothing more than a call to an ansible module. Tasks are made up of two parts the module and any arguments to that module. When you run a
task, the Ansible server SSH into the client and then using the Python module runs the command you have requested (examples are ping, command, etc), all
tasks have a return status. There are many modules, below is a list grouped by category, see Ansible docs for latest list

Playbooks

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 3/12

Plays are simply a set of hosts and tasks that need to be executed against those hosts, A Playbook is made up of plays. When running a playbook the display
is in four parts

Firstly is the play itself
The next step is gathering facts, the ansible server logs into each host to collects information about the client, this info is then injected into the
playbook
The next step are the tasks being executed, this phase we are only interested in executing the task and making sure its successful.
Lastly we have the output which recaps a summary of the playbook

Playbook example
(basic (YAML))

 - hosts: all

 tasks:

 - name: get server hostname

 command: hostname

There are many playbooks you can create to perform some of the below, generally you can go to the Ansible module page and then select the module that
you want, it will give you details on how to use the module, options that are available, etc. You can then use that module inside your playbooks.

Install or remove packages
Start/Stop/Restart services
Create, remove, change permission of files
Configure Firewalls
Configure web servers like Apache
Setup databases
Many, many more

I will demostrate some of the modules below, first starting with installing packages.

Packages (simple) loadbalancer.yml

- hosts: loadbalancer

 become: true # use sudo command (you may or may not

need)

 tasks:

 - name: install nginx

 apt: name=nginx state=present update_cache=yes

 ## yum: name=nginx state=present # there is more to this but using yum

instead

database.yml

- hosts: database

 become: true # use sudo command (you may or may not

need)

 tasks:

 - name: install mysql-server

 apt: name=mysql-server state=present update_cache=yes

 ## yum: name=mysql-server state=present # there is more to this but using yum

instead

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 4/12

Packages
(multiple)

- hosts: webserver

 become: true

 tasks:

 - name: install web components

 apt: name={{item}} state=present update_cache=yes # {{item}} use the with_items list

(using jinja syntax)

 with_items:

 - apache2

 - libapache2-mod-wsgi

 - python-pip

 - python-virtualenv

Next we look at services

Services
(start/enabled)

loadbalancer.yml

- hosts: loadbalancer

 become: true

 tasks:

 - name: install nginx

 apt: name=nginx state=present update_cache=yes

 - name: ensure nginx started

 service: name=nginx state=started enabled=yes # service module, enable means

startup mode

database.yml

- hosts: database

 become: true

 tasks:

 - name: install mysql-server

 apt: name=mysql-server state=present update_cache=yes

 - name: ensure mysql started

 service: name=mysql state=started enabled=yes # service module, enable means

startup mode

Service
(stop/restart/start)

Bring stack down

- hosts: loadbalancer

 become: true

 tasks:

 - service: name=nginx state=stopped

- hosts: webserver

 become: true

 tasks:

 - service: name=apache2 state=stopped

Restart mysql

- hosts: database

 become: true

 tasks:

 - service: name=mysql state=restarted

Bring stack up

- hosts: webserver

 become: true

 tasks:

 - service: name=apache2 state=started

- hosts: loadbalancer

 become: true

 tasks:

 - service: name=nginx state=started

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 5/12

Service (handlers) ---

- hosts: webserver

 become: true

 tasks:

 - name: install web components

 apt: name={{item}} state=present update_cache=yes

 with_items:

 - apache2

 - libapache2-mod-wsgi

 - python-pip

 - python-virtualenv

 - name: ensure apache2 started

 service: name=apache2 state=started enabled=yes

 - name: ensure mod_wsgi enabled

 apache2_module: state=present name=wsgi

 notify: restart apache2 # we notify the handler below (use

handler name)

 handlers: # handler won't do anything unless you

notify it

 - name: restart apache2

 service: name=apache2 state=restarted

Now lets take a look at files

Files (copy) # place this into the webserver playbook

- name: copy demo app source

 copy: src=demo/app/ dest=/var/www/demo mode=0755 # destination directory will be created

 notify: restart apache2 # we notify the handler to restart apache

- name: copy apache virtual host config

 copy: src=demo/demo.conf dest=/etc/apache2/sites-available mode=0755

 notify: restart apache2 # we notify the handler to restart apache

Files (using pip) # place this into the webserver playbook

- name: setup python virtualenv

 pip: requirements=/var/www/demo/requirements.txt virtualenv=/var/www/demo/.venv

 notify: restart apache2

Files (symlinks) # place this into the webserver playbook

- name: de-activate default apache site

 file: path=/etc/apache2/sites-enabled/000-default.conf state=absent # remove symlink

 notify: restart apache2

- name: activate demo apache site

 file: src=/etc/apache2/sites-available/demo.conf dest=/etc/apache2/sites-enabled/demo.conf state=link

create symlink

 notify: restart apache2

Files (template) # place this into the loadbalancer playbook

- name: configure nginx site

 template: src=templates/nginx.conf.j2 dest=/etc/nginx/sites-available/demo mode=0644

 notify: restart nginx

nginx.conf.j2 (template file (jinja syntax))

--

upstream demo {

{% for server in groups.webserver %} # get all the hosts in the webserver group

 server {{ server }};

{% endfor %}

}

server {

 listen 80;

 location / {

 proxy_pass http://demo;

 }

}

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 6/12

Files (inline) # place this into the database playbook

- name: ensure mysql listening on all ports

 lineinfile: dest=/etc/mysql/my.cnf regexp=^bind-address line="bind-address = 0.0.0.0" #

subsitute a line in the my.cnf file

 notify: restart mysql

There are many modules for databases (mysql, postgres, mongodb, etc) which you can use to setup databases, user, etc. I demostrate the MySQL one below

MySQL Module database.yml file

--

- hosts: database

 become: true

 tasks:

 - name: install tools

 apt: name={{item}} state=present update_cache=yes

 with_items:

 - python-mysqldb # we need the python-

mysqldb package

 - name: install mysql-server

 apt: name=mysql-server state=present update_cache=yes

 - name: ensure mysql started

 service: name=mysql state=started enabled=yes

 - name: ensure mysql listening on all ports

 lineinfile: dest=/etc/mysql/my.cnf regexp=^bind-address line="bind-address = 0.0.0.0"

 notify: restart mysql

 - name: create demo database

 mysql_db: name=demo state=present # create a database

called demo

 - name: create demo user

 mysql_user: name=demo password=demo priv=demo.*:ALL host='%' state=present # create a user

called demo and grant permissions

 handlers:

 - name: restart mysql

 service: name=mysql state=restarted

The shell module is useful to retrieve information from the system for example get a directopry listing

Shell Module - name: get active sites

 shell: ls -1 /etc/nginx/sites-enabled

 register: active # save return output into variable

- name: de-activate sites

 file: path=/etc/nginx/sites-enabled/{{ item }} state=absent # use below with_items array

 with_items: active.stdout_lines # use above variable that was saved

 when: item not in sites

 notify: restart nginx

A good idea is to create a playbook to check the status of the environment, this also highlights some of the other features that are available with Ansible. You
can of course could use a monitoring tool as well.

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 7/12

Status playbook ---

- hosts: loadbalancer

 become: true

 tasks:

 - name: verify nginx service

 command: service nginx status # standard command execution to

check nginx

 - name: verify nginx is listening on 80

 wait_for: host={{ ansible_eth0.ip4.address }} port=80 timeout=1 # test connection, wait for 1

second to get response (I will cover facts later)

- hosts: control # run from the control host (Ansible

server)

 tasks:

 - name: verify end-to-end index response

 uri: url=http://{{item}} return_content=yes # make sure we get a 200 status and

also return the contents of the web page

 with_items: groups.loadbalancer # run the above against the

loadbalance group

 register: lb_index # save the output so that we can use

later (array)

 - fail: msg="index failed to return content" # this will check the above output,

using the fail module

 when: "'Hello, from sunny' not in item.content" # check that this is in the web page

 with_items: "{{lb_index.results}}" # we use the saved register from

above task (lb_index)

 - name: verify end-to-end db response

 uri: url=http://{{item}}/db return_content=yes

 with_items: groups.loadbalancer

 register: lb_db

 - fail: msg="db failed to return content"

 when: "'Database Connected from' not in item.content"

 with_items: "{{lb_db.results}}"

Roles

Roles are ways of automatically loading certain vars_files, tasks, and handlers based on a known file structure, allows for better scaling. Grouping content by
roles also allows easy sharing of roles with other users. You can use a tool called Ansible Galaxy to scaffold the directory structure

Galaxy
(scaffolding)

mkdir /ansible/roles

cd /ansible/roles

ansible-galaxy init <directory name> # use something meaningful for the directory

name

ansible-galaxy init control # used for the Ansible server (for example)

ansible-galaxy init nginx # used for nginx configuration (for example)

ansible-galaxy init mysql # used for mysqld configuration (for example)

The directory structure will look something like below, you can see that I have created a directory structure for each part of the project (control, nginx,
mysql, app, etc), you can create what ever structure you like based on what you will be using Ansible for.

So now we can use the directory structure and roles for the playbooks, for example lets take the control, below i show the tasks but you will also need to
change the handlers, templates, etc.

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 8/12

/ansible/control/tasks/main.yaml # some of the boiler code can be removed

- name: install tools

 apt: name={{item}} state=present update_cache=yes

 with_items:

 - curl

 - python-httplib2

/ansible/control.yml ---

- hosts: control

 become: true

 roles: # point to the control role

 - control

When you run the playbook you will now see the role name and the task

You can create a playbook that runs other playbooks, generally this is called site.yml

site.yml ---

- include: control.yml # include a playbook to run

- include: database.yml

- include: webserver.yml

- include: loadbalancer.yml

Variables can be setup in Ansible that can be used with playbooks, Ansible provides dynamic variables called facts that can be used inside playbooks.

Facts (IP address) # we can use the ansible_eth0.ipv4.address fact to get the IP address

- name: ensure mysql listening on all ports

 lineinfile: dest=/etc/mysql/my.cnf regexp=^bind-address line="bind-address = {{

ansible_eth0.ipv4.address }}"

 notify: restart mysql

You can use the specific defaults/main.yml (for each project playbook) file to create custom variables that can be used in other files

defaults.yml ---

db_name: myapp

db_user_name: dbuser

db_user_pass: dbpass

db_user_host: localhost

to use the variables

- name: create database

 mysql_db: name={{ db_name }} state=present

- name: create user

 mysql_user: name={{ db_user_name }} password={{ db_user_pass }} priv={{ db_name }}.*:ALL

 host='{{ db_user_host }}' state=present

you can also use the vars/main.yml

vars/main.yml ---

some_var1: var1

some_var2: var2

You can loop through the elements of a hash using with_dict

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 9/12

with_dict example ---

sites: # top level

 myapp: # key

 frontend: 80 # value

 backend: 80 # value

using with_dict in playbooks

- name: configure nginx sites

 template: src=nginx.conf.j2 dest=/etc/nginx/sites-available/{{ item.key }} mode=0644

 with_dict: sites

 notify: restart nginx

- name: activate nginx sites

 file: src=/etc/nginx/sites-available/{{ item.key }} dest=/etc/nginx/sites-enabled/{{ item.key }}

state=link

 with_dict: sites

 notify: restart nginx

using with_dict in templates

upstream {{ item.key }} {

{% for server in groups.webserver %}

 server {{ server }}:{{ item.value.backend }};

{% endfor %}

}

server {

 listen {{ item.value.frontend }};

 location / {

 proxy_pass http://{{ item.key }};

 }

}

You can create a directory at the top level called /ansible/group_vars and then create a file called all, global variables can then be added to this file that can
be used across all roles. You can create a file for each group if you wish. You can also create a file called /ansible/all/vars which would do the same thing.

group varibles # nothing new here file: group_vars/all

db_name: demo

db_user: demo

db_pass: demo

You may need to encrypt some variables and we can use Ansible Vault to do this, its better to create the vault file where the global variable file resides. You
need to create a vault file see the commands section below

Vault # nothing new here

vault_db_pass: demo

use the vault file

db_name: demo

db_user: demo

db_pass: "{{ vault_db_pass }}"

Ansible has variable precedence as can be seen below which is taken from the Ansible documentation, the top of the list has the lowest priority and the
bottom of the list has the highest priority. You can include variables inside the playbooks (site level, playbook top level, etc) but try to keep things simple.

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 10/12

Bits and Pieces

This section covers the remaining bits and pieces of Ansible, performance improvements, optimizations and tidy ups.

You can turn off the fact gather if you don't use it
You can use a apt cache (or yum) limt time, so that cache is not always updating
You can limit what to run in a yaml file using the --limit option
You can limit execution by using tags
You can override the change output because you know nothing changed
For debuging you can use the ignore errors option
You can use debug to output any variable values

.

turn off fact
gathering

gather_facts: false

Note: might be a good idea to add when creating files and remove when you need to gather facts.

cache vaild time tasks:

 -name: update apt cache

 apt: update_cache=yes cache_vaild_time=86400 # 24 hour cache valid time

limit option ansible-playbook site.yml --limit <hostname> # will limit to just that host

tags - name: install tools

 apt: name={{item}} state=present update_cache=yes

 with_items:

 - curl

 - python-httplib2

 tags: ['package'] # this task is now tagged with the package tag

ansible-playbook site.yml --list-tags # list all the tags that are available in the

site.yml (and included)

ansible-playbook site.yml --tags "package" # run the playbook with the tag/s specified

ansible-playbook site.yml --skip-tags "package" # run the playbook but skip the specified tags

changed_when tasks:

 - name: verify nginx service

 command: service nginx status

 changed_when: false # we know the outcome so we set to false

change_when: "active.stdout_lines != site.keys()" # you can do complex code but result must be a

boolean

ignore_errors tasks:

 - name: verify nginx service

 command: service nginx status

 changed_when: false # we know the outcome so we set to false

 ignore_errors: true # ignore any errors at this stage and move on to

the next step

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 11/12

debug option - debug: var=active.stdout_lines # var will be printed to the console when playbook is

run

- debug: var=vars # print out all variables

Ansible Commands

Some but not all of the commonly used Ansible commands:

Directories and
files

/etc/ansible/hosts # default inventory file

/etc/ansible/ansible.cfg # ansible configuration file

<own directory>/ansible.cfg # create own directory for all ansible file

Configuration file options (ansible.cfg)

inventory = <some directory> # change the default directory of inventory file

Inventory (hosts,
groups)

ansible --list-hosts all # list all hosts

ansible -i <inventory file> --list-hosts all # list all hosts using specific inventory file

ansible --list-hosts "*" # list all hosts using wildcard

ansible --list-hosts <group name> # list all hosts in group

ansible --list-hosts <hostname> # list all hosts with specific hostname

ansible --list-hosts <string*> # list all hosts using search string and

wildcard

ansible --list-hosts <control[:|,]database> # list all hosts using multiple groups , : = old

way and , = new way

ansible --list-hosts <webserver[0]> # list all hosts using group and indexing

ansible --list-hosts <\!webserver> # list hosts except anything in webserver group

Options to inventory file

ansible_connection=local # use local conneection as control is as as running host

vault_password_file = <location> # set the vault password file location (text file that is locked

down)

Note: you can create a ansible.cfg in you own created directory and if you run commands it will use this

cfg file.

Tasks (modules) # useful tasks to check host connectivity

ansible -m ping all # use ping module

ansible -m command -a "hostname" all # run the hostname command on all hosts

Playbooks (plays) ansible-playbook <playbook file> # run a playbook

ansible-playbook <site.yml file> # run a site file that includes other playbooks

ansible-playbook site.yml --limit <hostname> # will limit to just that host

ansible-playbook site.yml --limit @<failed file name> # run playbook only on the failed hosts in the

specified fail host file

ansible-playbook --list-tasks # lists the tasks in the playbook

ansible-playbook --start-at-task <task name> # run the playbook starting at task specified

ansible-playbook site.yml --list-tags # list all the tags that are available in the

site.yml (and included)

ansible-playbook site.yml --tags "package" # run the playbook with the tag/s specified

ansible-playbook site.yml --skip-tags "package" # run the playbook but skip the specified tags

ansible-playbook site.yml --limit ? --tags ? --start-at-task ? # you can mix and match limit, start-

at-task and tags

ansible-playbook site.yml --step # ansible will prompt/ask each step in the

playbook

ansible-playbook --syntax-check <yaml file> # check the syntax of the yaml file

ansible-playbook --check <yaml file> # perform a dry run but don't actually do

anything (report only)

ansible-playbook --ask-vault-pass <playbook> # allows you to enter vault password

ansible-playbook --vault-password-file <location> # specify the file that has the vault password,

text file that is locked down

Facts ansible -m setup <hostname> # list facts for specific hostname in inventory

20.10.2023, 21:26 Ansible Cheatsheet

www.datadisk.co.uk/html_docs/ansible/ansible_cheatsheet.html 12/12

Vault ansible-vault create <file name> # generally called vault, enter password to encrypt

file

ansible-vault edit <file name> # view and edit vault file

Performance time ansible-playbook <playbook> # record how long a playbook takes to run

(benchmark)

Return to Main Page

Copyright ©2023 All rights reserved

http://www.datadisk.co.uk/new/index.html

