
20.10.2023, 21:26 Docker Cheatsheet

www.datadisk.co.uk/html_docs/docker/docker_cheatsheet.html 1/8

Docker Cheatsheet
This is a quick and dirty Docker, Docker-Machine and Docker Swarm cheatsheet, this is still being worked on.

First lets start with some Docker terminology, below are the commonly used parts of the Docker Platform

Docker Server is a server with Docker installed and has images and containers (running), its where the
Docker Engine (see below) is running.

Docker Client is the primary way that many Docker users interact with Docker

Docker Machine Docker Machine allows you to provision Docker machines in a variety of environments,
including virtual machines that reside on your local system, on cloud providers, or on bare
metal servers (physical computers)

Docker Compose is a tool for defining and running multi-container Docker applications. With Compose, you
use a YAML file to configure your application’s services. Then, with a single command, you
create and start all the services from your configuration.

Docker Hub is the world's easiest way to create, manage, and deliver your teams' container applications

Docker Image single file with all the dependencies and configuration required to run a specific program
(for example Redis, JBoss, etc). The image will also contain a startup command to start
what ever service you need to be running.

Docker Container is a instance of an image, its like a running program that offers a service (for example
Redis, JBoss, etc), a container has its own memory, own networking, etc basically it's
isolated from other containers. You can create, start, stop, move, or delete a container
using the Docker API or CLI. You can connect a container to one or more networks, attach
storage to it, etc.

Think of a container as a set processes that has access to a group of reources specify
assigned to it.

Docker Engine is a client-server application with these major components
A server which is a type of long-running program called a daemon process (the
dockerd command)
A REST API which specifies interfaces that programs can use to talk to the daemon
and instruct it what to do
A command line interface (CLI) client (the docker command)

The Docker Platform can be seen in the below image

The below diagram displays the difference between a virtual machine (VMware) and a Docker container, the big difference is that the running containers
share the host OS kernel, virtual machines use a guest O/S.

20.10.2023, 21:26 Docker Cheatsheet

www.datadisk.co.uk/html_docs/docker/docker_cheatsheet.html 2/8

Docker

Below are some of the commonly used docker and docker-compose commands

Docker and
docker-compose
installation

yum install docker-engine

Docker-Compose installation

yum install epel-release

yum install -y python-pip

pip install docker-compose

yum upgrade python* # update python

pip install backports.ssl_match_hostname --upgrade # if get hostname

mismatch error you can use either container ID or container name

Directories /var/lib/docker # Docker directory

/var/lib/docker/containers

General
commands

docker version # get both client and

server versions

docker info # get the server docker

detailed information

docker login --username=datadiskpfv --email=paul.valle@datadisk.co.uk # login into docker hub

docker logout # logout of docker hub

docker events # print out realtime

docker server events, you have filter start/end times

docker system prune [-a] # delete all stopped

containers, unused networks, dangling images and build cache

Images docker search <search_string> # search for images on

docker.io

docker images # list all images

docker rmi [-f] <image> # remove an image

docker history [--no-trunc] <image> # display the history

(layers) of an image

docker inspect <image> # inspect an images, get

lots of detail

docker tag <image:tag> <image:tag> # associates a repo and a

tag name with an image

docker [save|load] [-o|-i] # save/loads an images

to/from a tar file, (-o = output) (-i = input)

docker commit -c 'CMD ["<command>"]' <container ID> test/cowsayimage:latest # keep a running image

and specify a startup command

docker push <image> # when pushing images

make sure you are logged in (see general commands)

docker pull <image> # when pulling images

make sure you are logged in (see general commands)

20.10.2023, 21:26 Docker Cheatsheet

www.datadisk.co.uk/html_docs/docker/docker_cheatsheet.html 3/8

Volumes docker volume create # create a docker volume

docker volume ls # list all docker volumes

docker volume rm <volume name> # remove a docker volume

docker volume inspect <volume name> # inspect a docker volume

Containers docker ps [-a] [--no-trunc] # list the containers (-a

will list all stopped containers)

docker stop <container ID> # stop a running

container gracefully if possible, otherwise a kill will be sent after 10 seconds

docker kill <container ID> # stop a running

container in its tracks

docker start [-i|-a] <container ID> # start an existing

container (use docker ps -a to list all)

docker rm <container ID> # remove a container

(make sure its stopped first)

docker rm -v $(docker ps -aq -f status=exited) # remove all exited

containers

docker rm $(docker ps -aq) # another version of

above

docker top <container ID> # TOP process command for

a container

docker export/import # export/import an images

to a tar file (no layer history, port CMD, endpoints, etc)

docker create <image> # create a container

using a image

docker rename <container ID> <new name> # rename a container

docker inspect <container ID> # get container

information (get IP address for example)

docker inspect --format '{{.NetworkSettings.IPAddress}}' <container ID> # get specific container

information

docker inspect -f '{{.Mounts}}' <container ID> # another example this

time looking at Mounts

docker diff <container ID> # see if any changes to

the container has happened

docker logs <container ID> [-f] # list what has happened

inside container, -f like tail

docker exec -it <container ID> bash # connect to a running

container, must have image id and bash at end

docker exec -it --user <user> <container ID> sh # connect to a running

container as a specific user, also using shell this time

docker attach <container ID> # connect to a running

container, when disconnect stops container (use ctrl-P and then Ctrl-Q to ext with stopping)

docker port <container ID> # display any ports that

are used by the container

Run commands docker run -i -t debian /bin/bash # run a container (image

debian) but give us a shell inside container (-t = tag/image, -i interactive shell)

docker run test/cowsay-dockerfile # start the container

(will create a separate container for each run)

docker run --rm -it --link myredis:redis redis /bin/bash # start a container and

link it to the myredis container

docker run -it --name container-test -h CONTAINER -v /docker/cowsay/data:/data debian /bin/bash

the v means mount /data in the container to the external /home/pvalle/data

docker run -it -h NEWCONTAINER --volumes-from container-test debian /bin/bash

mount the above /data in a new container, now they share

docker run --rm --volumes-from dbdata -v $(pwd):/backup debian tar cvf /backup/backup.tar

/var/lib/postgresql/data # backup a containers postgresql /data area

docker run -d -p 8000:80 nginx # start a container bind

a local port 8000 to the container port 80

docker run -d -P nginx # same as above but

docker will select a free server port to connect to container port 80

docker run -p 8080:8080 -p 9990:9990 -p 9999:9999 -it jboss # run a jboss contain and

assign ports

Dockerfile and Images

20.10.2023, 21:26 Docker Cheatsheet

www.datadisk.co.uk/html_docs/docker/docker_cheatsheet.html 4/8

A Dockerfile is a text document that contains all the commands a user could call on the command line to assemble an image. below are some (but not all) of
the commonly used instructions, a dockerfile must start with the FROM instruction

FROM - This will set the base image using the parent image you have specified, examples are hello-word, ubuntu,
COPY - add files or directories to the image, this is more simple than ADD
ADD - add files or directories to the image, has more features than COPY
ENV - used to define environment variables
RUN - will execute commands, useful if you want to update the OS image for example, or create a user, etc
VOLUME - tell Docker to store specific files in a specific directory that should be stored on the host file system not in the containers file system
USER - from this point forward run as a specific user
WORKDIR - define a working directory, handy if you need to copy files to a specific place
EXPOSE - inform your users about the ports your application is listening on for example port 80 for a HTTP connection.
CMD - is the instruction to specify what component is to be run by your image with arguments
ENTRYPOINT - helps you to configure a container that you can run as an executable

Docker build
commands

docker build . # Will use Dockfile in current directory

docker build -f Dockerfile.dev . # use the -f to specify the name of the docker

file

tag name convention is <your Docker ID>/<repo or project name>:<version>

docker build -t test/cowsay-dockerfile:latest . # build a image (the . means use a Dockerfile, -t

tag name)

Note: the default name of a docker file is Dockerfile

Docker file
example

FROM node:alpine

change to /app directory in container

WORKDIR '/app'

copy from filesytem to container

COPY ./package.json ./

run the command npm install inside the container

RUN npm install

copy from filesytem to container

COPY . .

run the command "npm run start" inside the container

CMD ["npm", "run", "start"]

Docker file
example

build image for JBoss EAP 7.1

Use parent image eap71-openshift

FROM registry.access.redhat.com/jboss-eap-7/eap71-openshift

file author / maintainer

MAINTAINER "FirstName LastName" "emailaddress@gmail.com"

Deploy your application by copying war file to deployments folder

COPY app.war $JBOSS_HOME/standalone/deployments/

User root to modify war owners and create volume

USER root

Modify owners war

RUN chown jboss:jboss $JBOSS_HOME/standalone/deployments/app.war

Specify a external volume to keep the log files

VOLUME /opt/jboss/wildfly/standalone/log

Important, use jboss user to run image

USER jboss

20.10.2023, 21:26 Docker Cheatsheet

www.datadisk.co.uk/html_docs/docker/docker_cheatsheet.html 5/8

Using phases # Phase One

FROM node:alpine as builder # will build in /app/build and be used in phase two

WORKDIR '/app'

COPY package.json .

RUN npm install

COPY . .

RUN npm run build

Phase Two (using phase one build)

FROM nginx

COPY --from=builder /app/build /usr/share/nginx/html

The docker image created is built in layers, the first layer being the parent image (FROM instruction), then any additional instructions are a specific layer
within the image as per the diagram below. Docker when rebuilding is clever enough to know what layers have been previous built and will use those existing
layers instead of rebuilding them if they have not changed, if no changes are made then it will use the already cached version.

Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applications. With Compose, you use a YAML file to configure your application’s
services. Then, with a single command, you create and start all the services from your configuration.

There are many commands you can use with the docker-compose command

Below are some docker Compose commands and some example docker-compose files.

20.10.2023, 21:26 Docker Cheatsheet

www.datadisk.co.uk/html_docs/docker/docker_cheatsheet.html 6/8

Docker compose
commands

docker-compose [up|down] # start/stop the

containers using the docker-compose.yml file

docker-compose up [-d] [--build] # fork to the background

docker-compose [stop|start] # stop/start the

containers using the docker-compose.yml file

docker-compose ps # show the docker group

of containers

docker-compose rm # remove existing docker-

compose containers, again it eill use the yml file

docker-compose logs # displays the logs for

the composed managed containers

docker-compose build [--no-cache] # rebuilds the docker

images using the Dockerfile, no-cache forces complete rebuild

docker-compose run # spins up a container to

run a one-off command

Note: most of the docker-compose commands the docker-compose file needs to be in the current directory

docker-
compose.yml file

version: "3"

services:

 redis-server:

 image: "redis"

 node-app:

 restart: on-failure

 build: .

 ports:

 - "4001:8081"

docker-
compose.yml file

version: "3"

services:

 mysql:

 image: "mysql:5.7"

 container_name: mysql

 restart: always

 volumes:

 - ./mysql:/var/lib/mysql # <local filesystem>:<container filesystem>

 environment: # key/value pair array

 - MYSQL_ROOT_PASSWORD=your_password

 - MYSQL_USER=root

 - MYSQL_PASSWORD=your_password

 - MYSQL_DATABASE=wordpress

 ports:

 - "3306:3306" # <external port>:<container port>

 my_super_app:

 build:

 context: ./my_super_app # dockerfile will be located in this directory

 dockerfile: Dockerfile_super_app.dev # specific Dockerfile

 container_name: my_supper_app

 depends_on:

 - mysql

 command: ["run", "my", "super_app"]

Docker-Machine

Docker Machine is a tool that lets you install Docker Engine on virtual hosts, and manage the hosts with docker-machine commands, its not commonly used
but below are some of the commonly used docker-machine commands

20.10.2023, 21:26 Docker Cheatsheet

www.datadisk.co.uk/html_docs/docker/docker_cheatsheet.html 7/8

Docker-Machine
commands

docker-machine create --driver digitalocean --digitalocean-access-token <access token> dockertest1

docker-machine create --driver generic --generic-ip-address <IP Address> --generic-ssh-

key=/root/.ssh/id_rsa --generic-ssh-user root dockertest1

docker-machine [commands - see below] dockertest1

Commands:

 active Print which machine is active

 config Print the connection config for machine

 create Create a machine

 env Display the commands to set up the environment for the Docker client

 inspect Inspect information about a machine

 ip Get the IP address of a machine

 kill Kill a machine

 ls List machines

 provision Re-provision existing machines

 regenerate-certs Regenerate TLS Certificates for a machine

 restart Restart a machine

 rm Remove a machine

 ssh Log into or run a command on a machine with SSH.

 scp Copy files between machines

 start Start a machine

 status Get the status of a machine

 stop Stop a machine

 upgrade Upgrade a machine to the latest version of Docker

 url Get the URL of a machine

 version Show the Docker Machine version or a machine docker version

 help Shows a list of commands or help for one command

Docker Swarm

Below are some of the commonly used docker swarm commands

Setup docker-machine ip dockerm01 # 192.168.1.71

docker-machine ip dockers01 # 192.168.1.72

docker-machine ip dockers02 # 192.168.1.73

docker swarm init --advertise-addr 192.168.1.71 # manager, set up

manager node

docker swarm join-token worker # manager, get

join command for worker (see below)

docker swarm join-token manager # manager, get

join command for manager

docker swarm join --token <token> 192.168.1.71:2377

Docker Swarm
commands

docker node ls # manager

docker service create --replicas 2 -p 80:80 --name web nginx # manager

docker service rm web # manager

docker service ls # manager

docker service ps [web] # manager

docker node ps dockers01 # manager

docker service scale web=2 # manager

docker node inspect [self|dockers01|dockers02] # manager

docker node inspect --pretty [self|dockers01|dockers02] # manager

docker node update --availability drain dockers02 # manager

docker node update --availability active dockers02 # manager

docker service update --image <imagename>:<version> web # manager

docker swarm leave # client or

manager

docker node demote <ID> # manager

docker node rm <ID> # manager

docker network ls # manager

Return to Main Page

http://www.datadisk.co.uk/new/index.html

20.10.2023, 21:26 Docker Cheatsheet

www.datadisk.co.uk/html_docs/docker/docker_cheatsheet.html 8/8

Copyright ©2023 All rights reserved

